2015年考試崗位能力指導(dǎo):數(shù)學(xué)運(yùn)算之剩余問(wèn)題

在軍隊(duì)文職崗位能力考試中整除的問(wèn)題經(jīng)常出現(xiàn),而在整除的基礎(chǔ)上又衍生出不能整除的問(wèn)題,即有余數(shù)的問(wèn)題也不斷的出現(xiàn),下面國(guó)家軍隊(duì)文職考試網(wǎng)將介紹特殊的剩余問(wèn)題,即余同問(wèn)題、和同問(wèn)題以及差同問(wèn)題。一、剩余定理的特殊情況(1)余同(余數(shù)相同):除數(shù)的最小公倍數(shù)+余數(shù)例題1:三位數(shù)的自然數(shù)P滿(mǎn)足:除以4余2,除以5余2,除以6余2,則符合條件的自然數(shù)P有多少個(gè)?,(n=0,1,2,3……),當(dāng)n=2時(shí),N=122,選擇B項(xiàng)。(2)和同(除數(shù)和余數(shù)的和相同):除數(shù)的最小公倍數(shù)+和(除數(shù)加余數(shù)的和)例題2:三位數(shù)的自然數(shù)P滿(mǎn)足:除以5余3,除以6余2,除以7余1,則符合條件的自然數(shù)P有多少個(gè)?A.3B.2C.4D.5(3)差同(除數(shù)減余數(shù)之差相同):除數(shù)的最小公倍數(shù)-差(除數(shù)減余數(shù)的和)例題3:某校三年級(jí)同學(xué),每5人一排多1人,每6人一排多2人,每7人一排3多人,問(wèn)這個(gè)年級(jí)至少有多少人?方法一:代入排除法(略)。方法二:通過(guò)觀察發(fā)現(xiàn)除數(shù)與余數(shù)的差均為4,所以此數(shù)滿(mǎn)足:N=210n-4(n=1,2,3……),當(dāng)n=1時(shí),算得次數(shù)為206,因此選A。二、剩余定理的一般情況例題4:一個(gè)自然數(shù)P同時(shí)滿(mǎn)足除以3余1,除以4余3,除以7余4,求滿(mǎn)足這樣條件的三位數(shù)共有多少個(gè)?例題5:一個(gè)自然數(shù)P同時(shí)滿(mǎn)足除以11余5,除以7余1,除以5余2,求滿(mǎn)足這樣條件的三位數(shù)共有多少個(gè)?A.9從上面的例題中我們可以總結(jié)出以下關(guān)系:如果一個(gè)數(shù)Q除以m余數(shù)是a,除以n余數(shù)是a,除以t余數(shù)是a,那么這個(gè)數(shù)Q可以表示為:Q=a+(m、n、t的最小公倍數(shù))N,N為整數(shù),a是相同的余數(shù)。如果一個(gè)數(shù)Q除以m余數(shù)是a-m,除以n余數(shù)是a-n,除以t余數(shù)是a-t,那么這個(gè)數(shù)Q可以表示為:Q=a+(m、n、t的最小公倍數(shù))N,N為整數(shù),a是除數(shù)同余數(shù)的加和。如果一個(gè)數(shù)Q除以m余數(shù)是m-a,除以n余數(shù)是n-a,除以t余數(shù)是t-a,那么這個(gè)數(shù)Q可以表示為:Q=(m、n、t的最小公倍數(shù))-aN-a,N為整數(shù),a為相同的除數(shù)和余數(shù)的差。不管題目怎么變化,只要記住這3個(gè)關(guān)系,在考試中的剩余問(wèn)題都是可以迎刃而解的。

2016年軍隊(duì)文職考試考試崗位能力備考:韓信點(diǎn)兵的剩余定理

2016年軍隊(duì)文職招錄工作已經(jīng)開(kāi)始了,大部分省份已經(jīng)在陸續(xù)發(fā)布招錄公告。在這個(gè)時(shí)候,考生們需要及時(shí)關(guān)注最新招錄公告和報(bào)名,但備考工作同樣不能放下。崗位能力是軍隊(duì)文職招聘類(lèi)的老大難,不知道愁壞了多少考生。故而,在考試越來(lái)越臨近的時(shí)候,考生們需要多加注意復(fù)習(xí)崗位能力。判斷推理是很多考生都不喜歡做,也是失分項(xiàng),而其中就報(bào)考剩余定理的考核。 中剩余定理的誕生于我的古典著作《孫子兵法》韓信點(diǎn)兵的故事,韓信當(dāng)初了劉邦談?wù)擃I(lǐng)兵作戰(zhàn),劉邦問(wèn)他自己能帶多少兵,韓信說(shuō)十萬(wàn)。當(dāng)劉邦問(wèn)韓信自己能帶多少兵的時(shí)候,韓信就說(shuō)多多益善,后來(lái)衍生成為了韓信點(diǎn)兵,多多益善這個(gè)成語(yǔ)了。不過(guò),既然領(lǐng)兵多多益善,那么點(diǎn)兵就有自己獨(dú)特的方法。

中剩余定理考核比較單一,我們?cè)谧鲱}求解的過(guò)程中關(guān)鍵是要能夠判斷出題目為剩余定理的考核,并結(jié)合主要求解方法和整除特性的運(yùn)用進(jìn)行求解。

2015福建軍隊(duì)文職崗位能力備考:數(shù)學(xué)運(yùn)算之剩余問(wèn)題

在軍隊(duì)文職崗位能力考試中整除的問(wèn)題經(jīng)常出現(xiàn),而在整除的基礎(chǔ)上又衍生出不能整除的問(wèn)題,即有余數(shù)的問(wèn)題也不斷的出現(xiàn),下面紅師教育網(wǎng)將介紹特殊的剩余問(wèn)題,即余同問(wèn)題、和同問(wèn)題以及差同問(wèn)題。 一、剩余定理的特殊情況 (1)余同(余數(shù)相同):除數(shù)的最小公倍數(shù)+余數(shù) 例題1:三位數(shù)的自然數(shù)P滿(mǎn)足:除以4余2,除以5余2,除以6余2,則符合條件的自然數(shù)P有多少個(gè)?